Add like
Add dislike
Add to saved papers

Effects of pH and substrate concentrations on dark fermentative biohydrogen production from xylose by extreme thermophilic mixed culture.

Biohydrogen is considered as one of the most promising energy alternatives considering the climate and energy crisis. The dark fermentative hydrogen production from xylose at extreme thermophilic condition (70 °C) using mixed culture was conducted in this study. The effects of initial pH values (ranged from 5.0 to 10.0) and substrate concentrations (ranged from 2.5 to 15.0 g/L) on the hydrogen production, substrate degradation and metabolite distributions were investigated using batch-mode operations. Results showed that initial substrate pH values in the neutral region (6.0-7.0) were beneficial for hydrogen production. The fermentation at initial pH 7.0 and 7.5 g/L xylose reached an optimal hydrogen yield of 1.29 mol-H2/mol-xyloseconsumed. Ethanol, butyrate, and propionate were the major liquid metabolites. The xylose biodegradation efficiency of the mixed culture decreased sharply at high initial culture pH values. The increase of xylose concentration resulted in the accumulation of propionate and an obvious decrease in the final pH value, as well as a low hydrogen yield. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis indicated that hydrogen producing bacteria were enriched by repeated culture under extreme thermophilic conditions. Also, the mixed culture was dominated with bacterial species related to Clostridium and Thermoanaerobacterium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app