Add like
Add dislike
Add to saved papers

Enhanced Electrochemical Sensing with Carbon Nanotubes Modified with Bismuth and Magnetic Nanoparticles in a Lab-on-a-Chip.

Iron plays an especially important role in human physiological functions and pathological impairments. The superior properties of carbon nanotubes (CNTs) and their modification with bismuth and magnetic nanoparticles as developed in this work have led to an extraordinary and novel material to facilitate ultrasensitive detection in the nanomolar range. Here, we present the development of an electrochemical sensor for detection of ferrous (Fe(2+)) and ferric (Fe(3+)) iron by means of CNTs modified with bismuth and magnetic nanoparticles for higher sensitivity of detection. The sensor fabrication includes microfabrication methodologies, soft lithography, and electrodeposition. Cyclic voltammetry and differential pulse voltammetry are used for the electroanalytical studies and detection of the ions in samples. The sensor has a dynamic range of detection from 0.01 nm to 10 mm. The performance of the sensor with modified CNTs was explored for sensitivity and specificity. CNTs, modified with bismuth and magnetic nanoparticles by means of electrodeposition, enhanced the detection limit significantly down to 0.01 nm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app