Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Controlling DNA-nanoparticle serum interactions.

Understanding the interaction of molecularly assembled nanoparticles with physiological fluids is critical to their use for in vivo delivery of drugs and contrast agents. Here, we systematically investigated the factors and mechanisms that govern the degradation of DNA on the nanoparticle surface in serum. We discovered that a higher DNA density, shorter oligonucleotides, and thicker PEG layer increased protection of DNA against serum degradation. Oligonucleotides on the surface of nanoparticles were highly resistant to DNase I endonucleases, and degradation was carried out exclusively by protein-mediated exonuclease cleavage and full-strand desorption. These results enabled the programming of the degradation rates of the DNA-assembled nanoparticle system from 0.1 to 0.7 h-1 and the engineering of superstructures that can release two different preloaded dye molecules with distinct kinetics and half-lives ranging from 3.3 to 9.8 h. This study provides a general framework for investigating the serum stability of DNA-containing nanostructures. The results advance our understanding of engineering principles for designing nanoparticle assemblies with controlled in vivo behavior and present a strategy for storage and multistage release of drugs and contrast agents that can facilitate the diagnosis and treatment of cancer and other diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app