Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

PPARδ Is Required for Exercise to Attenuate Endoplasmic Reticulum Stress and Endothelial Dysfunction in Diabetic Mice.

Diabetes 2017 Februrary
Physical activity has profound benefits on health, especially on cardiometabolic wellness. Experiments in rodents with trained exercise have shown that exercise improves vascular function and reduces vascular inflammation by modulating the balance between nitric oxide (NO) and oxidative stress. However, the upstream regulator of exercise-induced vascular benefits is unclear. We aimed to investigate the involvement of peroxisome proliferator-activated receptor δ (PPARδ) in exercise-induced vascular functional improvement. We show that PPARδ is a crucial mediator for exercise to exert a beneficial effect on the vascular endothelium in diabetic mice. In db/db mice and high-fat diet-induced obese mice, 4 weeks of treadmill exercise restored endothelium-dependent vasodilation of aortas and flow-mediated vasodilation in mesenteric resistance arteries, whereas genetic ablation of Ppard abolished such improvements. Exercise induces AMPK activation and subsequent PPARδ activation, which help to reduce endoplasmic reticulum (ER) and oxidative stress, thus increasing NO bioavailability in endothelial cells and vascular tissues. Chemical chaperones 4-phenylbutyric acid and tauroursodeoxycholic acid decrease ER stress and protect against endothelial dysfunction in diabetic mice. The results demonstrate that PPARδ-mediated inhibition of ER stress contributes to the vascular benefits of exercise and provides potentially effective targets for treating diabetic vasculopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app