Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In Vivo Hepatic Enhancer Elements in the Human ABCG2 Locus.

ABCG2 encodes the mitoxantrone resistance protein (MXR; breast cancer resistance protein), an ATP-binding cassette (ABC) efflux membrane transporter. Computational analysis of the ∼300 kb region of DNA surrounding ABCG2 (chr4:88911376-89220011, hg19) identified 30 regions with potential cis-regulatory capabilities. These putative regulatory regions were tested for their enhancer and suppressor activity in a human liver cell line using luciferase reporter assays. The in vitro enhancer and suppressor assays identified four regions that decreased gene expression and five regions that increased expression >1.6-fold. Four of five human hepatic in vitro enhancers were confirmed as in vivo liver enhancers using the mouse hydrodynamic tail vein injection assay. Two of the in vivo liver enhancers (ABCG2RE1 and ABCG2RE9) responded to 17β-estradiol or rifampin in human cell lines, and ABCG2RE9 had ChIP-seq evidence to support the binding of several transcription factors and the transcriptional coactivator p300 in human hepatocytes. This study identified genomic regions surrounding human ABCG2 that can function as regulatory elements, some with the capacity to alter gene expression upon environmental stimulus. The results from this research will drive future investigations of interindividual variation in ABCG2 expression and function that contribute to differences in drug response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app