Add like
Add dislike
Add to saved papers

Improved recombinant antibody production by CHO cells using a production enhancer DNA element with repeated transgene integration at a predetermined chromosomal site.

Chinese hamster ovary (CHO) cells are one of the most useful host cell lines for the production of biopharmaceutical proteins. Although a series of production processes have been refined to improve protein productivity and cost performance, establishing producer cells is still time-consuming and labor-intensive. Recombinase-mediated site-specific gene integration into a predetermined chromosomal locus may enable predictable protein expression, reducing the laborious process of cell screening. We previously developed an accumulative site-specific gene integration system (AGIS) using Cre recombinase and mutated loxP sites for transgene integration and amplification in the CHO cell genome. Epigenetic modifier elements such as insulators are effective DNA cis-regulatory elements for stabilizing transgene expression. Here, we attempted to enhance transgene expression in recombinant CHO cells generated by AGIS using a production enhancer DNA element (PE) derived from the CHO genome. The PE was introduced into an expression unit for a recombinant scFv-Fc antibody. The effect on scFv-Fc productivity of PE position and orientation within the transgene was evaluated, while keeping the background chromosomal structure constant. For the optimal PE arrangement, scFv-Fc productivity was enhanced 2.6-fold compared with an expression unit without a PE. The enhancing effect of the PE on transgene expression was also observed when two or three PE-flanked expression units were inserted as tandem repeats. These results indicate that AGIS using the PE-flanked expression unit is a promising approach for establishing producer cell lines for biopharmaceutical protein production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app