COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.

Lignocellulosic biomass, a promising renewable energy source, can be used for the production of second generation bioethanol. Simultaneous saccharification and fermentation (SSF), the process which alleviates the problem of separate hydrolysis and fermentation (SHF), requires thermotolerant ethanologenic yeast for bioethanol production. Therefore, ten yeast strains isolated from diverse sources, belonging to various genera like Saccharomyces, Candida, Pichia and Wickerhamomyces were evaluated for their thermotolerance, sugar utilization pattern, inhibitor tolerance and ethanol production potential with glucose, xylose and alkali pretreated paddy straw. All the tested strains were found to be thermotolerant, capable of significant growth at 40°C. Candida tropicalis Y6 was capable of utilizing a wide range of sugars as compared with other yeast isolates. Strains of Candida showed better inhibitor tolerance as compared to Saccharomyces and Pichia strains and exhibited only 5.1-18.8% and 4.7-7.9% reduction in growth with furfural and 5-hydroxymethyl furfural, respectively. Saccharomyces cerevisiae JRC6, isolated from distillery waste, produced ethanol with 88.3% and 89.1% theoretical efficiency at 40°C and 42°C, respectively, from glucose. This strain also produced significantly higher amount of ethanol (3.8 g/L) with better fermentation efficiency (87.9%) from alkali pretreated paddy straw at 40°C, as compared with the other yeast strains. Therefore, S. cerevisiae JRC6, based on its ability to ferment sugars at a higher temperature, can be a promising candidate for production of ethanol from lignocellulosic biomass via SSF process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app