Add like
Add dislike
Add to saved papers

Differential Expression of Renal Outer Medullary K + Channel and Voltage-gated K + Channel 7.1 in Bladder Urothelium of Patients With Interstitial Cystitis/Painful Bladder Syndrome.

Urology 2017 March
OBJECTIVE: To investigate the changes including expression and localization of 2 potassium channels, renal outer medullary K+ channel (ROMK) and voltage-gated K+ channel 7.1 (KCNQ1), after increased urinary potassium leakage in patients with interstitial cystitis/painful bladder syndrome (IC/PBS).

MATERIALS AND METHODS: The study group included 24 patients with IC/PBS and a control group consisting of 12 volunteers without any IC/PBS symptoms. Bladder biopsies were taken from both groups. We determined the protein expression and distribution of potassium channels using immunoblotting, immunohistochemistry, and immunofluorescent staining under confocal laser microscopy.

RESULTS: The results revealed that ROMK was predominantly expressed in apical cells of the bladder urothelium at significantly higher levels (3.3-fold) in the study group than in the control group. In contrast, KCNQ1 was expressed in the basolateral membrane according to confocal microscopy results and did not significantly differ between groups.

CONCLUSION: Our data showed that the abundance of ROMK protein in apical cells was increased in the IC/PBS group, whereas KCNQ1, which was distributed in the basolateral membrane of the bladder urothelium, showed similar abundance between groups. These results suggest that upregulation of the ROMK channel in apical cells might permit avid potassium flux into the bladder lumen to maintain intracellular K+ homeostasis in the dysfunctional urothelium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app