Add like
Add dislike
Add to saved papers

Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation.

In several ocular diseases, the vascular endothelial growth factor (VEGF) level has been found to be upregulated. Bevacizumab, an anti-VEGF drug, is the most commonly used off level drug for these conditions. Delivery of drug to the posterior site is desired for the effective management of these diseases. The present study was to develop and optimize the chitosan (CS)-coated poly(lactide-co-glycolic acid) (PLGA) nanoparticles (NPs) of bevacizumab for sustained and effective delivery to posterior ocular tissues. NPs were prepared by double emulsion solvent evaporation method and optimized for various variables (i.e., CS concentration, PLGA content, polyvinyl alcohol (PVA) concentration, and sonication time) by employing a 4-factor 3-level Box-Behnken statistical design. NPs were characterized for particle size, polydispersity index (PDI), entrapment efficiency (EE), and in vitro release. Transscleral flux was determined through goat sclera, and ocular tolerance assay was done by Hen's Egg Test chorioallantoic membrane method. The particle size and PDI of the optimized NPs were 222.28 ± 7.45 nm and 0.19 ± 0.08, respectively. The developed NPs showed an EE of 69.26 ± 1.31% with an extended release profile. The flux was significantly higher that is, 0.3204 ± 0.026 μg/cm2 /h for the NPs compared to drug solution. Thus, CS-coated PLGA NPs can be potentially useful as ocular drug carriers to target retina.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app