Add like
Add dislike
Add to saved papers

Role of DNA methylation in bisphenol A exposed mouse spermatocyte.

As a widespread environmental contaminant, bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA) has been implicated in male reproductive function injury. Previous studies have investigated the mechanisms of DNA damage and oxidative stress caused by BPA; however, little is known regarding its impact on DNA methylation. In this paper, we assessed the adverse effects of BPA on mouse spermatocytes and investigated a potential role of DNA methylation. We demonstrated that BPA exposure inhibited cell proliferation, reduced the DNA replication capacity, and triggered apoptosis in GC-2 cells. In addition, the global DNA methylation levels increased, and the relative expression levels of DNA methyltransferases (DNMTs) varied following BPA exposure. Thousands of distinct methylated sites were screened using microarray analysis. The expressions of myosin-binding protein H (mybph) and protein kinase C δ (prkcd) were verified to be regulated by DNA methylation. These findings indicate that BPA had toxicity in spermatocytes, and DNA methylation may play a vital role in the regulation of BPA-triggered spermatocyte toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app