Add like
Add dislike
Add to saved papers

Design of waveguide-integrated graphene devices for photonic gas sensing.

Nanotechnology 2016 December 17
We present waveguide-integrated graphene devices for photonic gas sensing. In a gas environment, graphene's conductivity is changed by adsorbed gas molecules which serve as charge-carrier donors or acceptors. To accurately probe gas-induced variations in the graphene's conductivity, we optimize the graphene's Fermi level and spectral region. Then, we propose graphene-on-silicon and graphene-on-germanium suspended membrane slot waveguides in which propagating light in the waveguide has a strong interaction with the top graphene layer. The gas concentration can be calculated by measuring the spectrum of the optical reflection from the waveguide Bragg grating. The maximum sensitivity of the waveguide-integrated gas sensor can reach one part per million for sensing gaseous nitrogen dioxide. Its sensitivity is about 20 times higher than that of the graphene-covered microfiber sensor and is comparable with that of a graphene plasmonic sensor. The fabrication of the proposed graphene device is CMOS compatible. Our results pave a way for chip-integrated sensitive photonic gas sensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app