Add like
Add dislike
Add to saved papers

Brain pathway differences between Parkinson's disease patients with and without REM sleep behavior disorder.

PURPOSE: REM (rapid eye movement) sleep behavior disorder (RBD) is characterized by increased muscle tone and violent limb movements and is a usual symptom of the early stages of Parkinson's disease (PD). PD patients with RBD represent faster motor and cognitive dysfunction progression. However, there are limited studies on possible structural brain changes underpinning this disorder.

METHODS: Diffusion magnetic resonance imaging (DMRI) was used to assess whether microstructural abnormalities in the brain of 23 RBD positive PD are detectable compared to 31 RBD negative PD. DMRI scans were analyzed without a prior hypothesis. Diffusion MRI connectometry was used to carry out group analysis between age and gender matched PD patients with and without RBD. Diffusion MRI connectometry is based on spin distribution function (SDF) which quantifies the density of diffusing water and is more sensitive to psychological differences between groups.

RESULTS: Patients with RBD positive showed microstructural white matter changes in the left and right cingulum, inferior front occipital fasciculus (IFOF), bilateral corticospinal tracts (CST), and middle cerebellar peduncles (MCPs), compared to patients without RBD.

CONCLUSIONS: White matter alterations in the cingulum, IFOF regions, and corpus callosum might explain faster cognitive deterioration in PD patients with RBD, in terms of visual recognition and visuospatial dysfunction and executive function. Disturbed brain structural tissue markers in CST in PD + RBD patients, could be justified in the light of faster motor progression in these patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app