Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of nanopore size on the flow-induced star polymer translocation.

We study the effects of the nanopore size on the flow-induced capture of the star polymer by a nanopore and the afterward translocation, using a hybrid simulation method that couples point particles into a fluctuating lattice-Boltzmann fluid. Our simulation demonstrates that the optimal forward arm number decreases slowly with the increase of the length of the nanopore. Compared to the minor effect of the length of the nanopore, the optimal forward arm number obviously increases with the increase of the width of the nanopore, which can clarify the current controversial issue for the optimal forward arm number between the theory and experiments. In addition, our results indicate that the critical velocity flux of the star polymer is independent of the nanopore size. Our work bridges the experimental results and the theoretical understanding, which can provide comprehensive insights for the characterization and the purification of the star polymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app