Add like
Add dislike
Add to saved papers

Change of plant phenophases explained by survival modeling.

It is known from many studies that plant species show a delay in the timing of flowering events with an increase in latitude and altitude, and an advance with an increase in temperature. Furthermore, in many locations and for many species, flowering dates have advanced over the long-term. New insights using survival modeling are given based on data collected (1970-2010) along a 3000-km long transect from northern to eastern central Europe. We could clearly observe that in the case of dandelion (Taraxacum officinale) the risk of flowering time, in other words the probability that flowering occurs, is higher for an earlier day of year in later decades. Our approach assume that temperature has greater influence than precipitation on the timing of flowering. Evaluation of the predictive power of tested models suggests that Cox models may be used in plant phenological research. The applied Cox model provides improved predictions of flowering dates compared to traditional regression methods and gives further insights into drivers of phenological events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app