Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Intronless WNT10B-short variant underlies new recurrent allele-specific rearrangement in acute myeloid leukaemia.

Scientific Reports 2016 November 18
Defects in the control of Wnt signaling have emerged as a recurrent mechanism involved in cancer pathogenesis and acute myeloid leukaemia (AML), including the hematopoietic regeneration-associated WNT10B in AC133bright leukaemia cells, although the existence of a specific mechanism remains unproven. We have obtained evidences for a recurrent rearrangement, which involved the WNT10B locus (WNT10BR ) within intron 1 (IVS1) and flanked at the 5' by non-human sequences whose origin remains to be elucidated; it also expressed a transcript variant (WNT10BIVS1 ) which was mainly detected in a cohort of patients with intermediate/unfavorable risk AML. We also identified in two separate cases, affected by AML and breast cancer respectively, a genomic transposable short form of human WNT10B (ht-WNT10B). The intronless ht-WNT10B resembles a long non-coding RNA (lncRNA), which suggests its involvement in a non-random microhomology-mediated recombination generating the rearranged WNT10BR . Furthermore, our studies supports an autocrine activation primed by the formation of WNT10B-FZD4/5 complexes in the breast cancer MCF7 cells that express the WNT10BIVS1 . Chemical interference of WNT-ligands production by the porcupine inhibitor IWP-2 achieved a dose-dependent suppression of the WNT10B-FZD4/5 interactions. These results present the first evidence for a recurrent rearrangement promoted by a mobile ht-WNT10B oncogene, as a relevant mechanism for Wnt involvement in human cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app