Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Light level impacts locomotor biomechanics in a secondarily diurnal gecko, Rhoptropus afer.

Locomotion through complex habitats relies on the continuous feedback from a number of sensory systems, including vision. Animals face a visual trade-off between acuity and light sensitivity that depends on light levels, which will dramatically impact the ability to process information and move quickly through a habitat, making ambient illumination an incredibly important ecological factor. Despite this, there is a paucity of data examining ambient light in the context of locomotor dynamics. There have been several independent transitions from the nocturnal ancestor to a diurnal activity pattern among geckos. We examined how ambient light level impacted the locomotor performance and high-speed three-dimensional kinematics of a secondarily diurnal, and cursorial, gecko (Rhoptropus afer) from Namibia. This species is active under foggy and sunny conditions, indicating that a range of ambient light conditions is experienced naturally. Locomotor speed was lowest in the 'no-light' condition compared with all other light intensities, occurring via a combination of shorter stride length and lower stride frequency. Additionally, the centre of mass was significantly lower, and the geckos were more sprawled, in the no-light condition relative to all of the higher light intensities. Locomotor behaviour is clearly sub-optimal under lower light conditions, suggesting that ecological conditions, such as very dense fog, might preclude the ability to run quickly during predator-prey interactions. The impact of ambient light on fitness should be explored further, especially in those groups that exhibit multiple transitions between diel activity patterns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app