Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Osteopontin inhibition of miR-129-3p enhances IL-17 expression and monocyte migration in rheumatoid arthritis.

BACKGROUND: Osteopontin (OPN) is an important proinflammatory cytokine in rheumatoid arthritis (RA). Levels of OPN have been shown to be significantly correlated with interleukin-17 (IL-17) production and expression of Th17 cells in the synovial fluid of RA patients. Here, we investigated the role of OPN in monocyte migration, IL-17 production and osteoblasts.

METHODS: OPN and IL-17 expression profiles in osteoarthritis (OA) and RA synovial fluid were determined by enzyme-linked immunosorbent assay (ELISA). The expression of the microRNA, miR-129-3p, in osteoblasts was analyzed by real-time quantitative polymerase chain reaction (qPCR). Immunoreactive proteins were spotted by Western blotting. We used the collagen-induced arthritis (CIA) mouse model to investigate the role of OPN in monocyte migration during RA.

RESULTS: OPN and IL-17 expression were higher in RA synovial fluid as compared to OA samples. We also found that OPN promotes IL-17 expression in osteoblasts and thereby enhances monocyte migration via the Syk/PI3K/Akt signaling pathway. miR-129-3p expression was found to be negatively regulated by OPN via the Syk/PI3K/Akt signal cascade. In contrast, lentiviral vectors expressing short hairpin RNA inhibited OPN expression and ameliorated articular swelling, cartilage erosion and monocyte infiltration in the ankle joints of CIA mice.

CONCLUSION: To our knowledge, our study is the first to describe how OPN promotes monocyte migration by upregulating IL-17 expression in osteoblasts in RA disease.

SIGNIFICANCE: These findings indicate that OPN could serve as a potential therapeutic target for the treatment of RA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app