Add like
Add dislike
Add to saved papers

Forced Unfolding Mechanism of Bacteriorhodopsin as Revealed by Coarse-Grained Molecular Dynamics.

Biophysical Journal 2016 November 16
Developments in atomic force microscopy have opened up a new path toward single-molecular phenomena; in particular, during the process of pulling a membrane protein out of a lipid bilayer. However, the characteristic features of the force-distance (F-D) curve of a bacteriorhodopsin in purple membrane, for instance, have not yet been fully elucidated in terms of physicochemical principles. To address the issue, we performed a computer simulation of bacteriorhodopsin with, to our knowledge, a novel coarse-grained (C-G) model. Peptide planes are represented as rigid spheres, while the surrounding environment consisting of water solvents and lipid bilayers is represented as an implicit continuum. Force-field parameters were determined on the basis of auxiliary simulations and experimental values of transfer free energy of each amino acid from water to membrane. According to Popot's two-stage model, we separated molecular interactions involving membrane proteins into two parts: I) affinity of each amino acid to the membrane and intrahelical hydrogen bonding between main chain peptide bonds; and II) interhelix interactions. Then, only part I was incorporated into the C-G model because we assumed that the part plays a dominant role in the forced unfolding process. As a result, the C-G simulation has successfully reproduced the key features, including peak positions, of the experimental F-D curves in the literature, indicating that the peak positions are essentially determined by the residue-lipid and intrahelix interactions. Furthermore, we investigated the relationships between the energy barrier formation on the forced unfolding pathways and the force peaks of the F-D curves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app