JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Does Otosclerosis Affect Dark and Transitional Cells in the Human Vestibular Labyrinth?

Otology & Neurotology 2017 Februrary
HYPOTHESIS: The density of vestibular dark cells (DCs) and vestibular transitional cells (TCs) can be quantitatively decreased in human temporal bones with otosclerosis.

BACKGROUND: Previous reports have shown that otosclerosis can lead to vestibular symptoms.

METHODS: We examined 61 human temporal bone specimens from 52 deceased donors with otosclerosis group-with and without endosteal involvement (EI), and with and without endolymphatic hydrops (EH)-versus 25 specimens from 18 age-matched controls. Using light microscopy, we evaluated the nonsensory epithelium of the lateral semicircular canal (LSC) and posterior semicircular canal (PSC) of the human vestibular labyrinth, focusing on the density of DCs and TCs.

RESULTS: In both the LSC and the PSC, as compared with the control group, the mean density of DCs significantly decreased in the EI (+) group, in the EI (+) and EH (+) subgroup, and in the EI (+) and EH (-) subgroup (p < 0.05). In addition, we found a significant difference in the mean density of DCs between the EI (+) group and the EI (-) group in the LSC and in the PSC (p < 0.05). But we found no significant difference in the mean density of TCs in any of the otosclerosis groups or subgroups as compared with the control group (p > 0.05).

CONCLUSION: We found a decrease in the density of DCs associated with EI in human temporal bone specimens with otosclerosis, regardless of the presence of EH. This decrease might cause damage in ion and water transportation, leading to vestibular symptoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app