Add like
Add dislike
Add to saved papers

Latent Semantic Minimal Hashing for Image Retrieval.

Hashing-based similarity search is an important technique for large-scale query-by-example image retrieval system, since it provides fast search with computation and memory efficiency. However, it is a challenge work to design compact codes to represent original features with good performance. Recently, a lot of unsupervised hashing methods have been proposed to focus on preserving geometric structure similarity of the data in the original feature space, but they have not yet fully refined image features and explored the latent semantic feature embedding in the data simultaneously. To address the problem, in this paper, a novel joint binary codes learning method is proposed to combine image feature to latent semantic feature with minimum encoding loss, which is referred as latent semantic minimal hashing. The latent semantic feature is learned based on matrix decomposition to refine original feature, thereby it makes the learned feature more discriminative. Moreover, a minimum encoding loss is combined with latent semantic feature learning process simultaneously, so as to guarantee the obtained binary codes are discriminative as well. Extensive experiments on several well-known large databases demonstrate that the proposed method outperforms most state-of-the-art hashing methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app