Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

High levels of DNA polymerase β mRNA corresponding with the high activity in Graves' thyroid tissue.

INTRODUCTION: High DNA polymerase β activity has been observed in the thyroid tissue of patients with Graves' disease (Nagasaka et al. in Metabolism 37:1051-1054, 1988). This fact aroused our interest in whether the alteration of DNA polymerase β activity depends on DNA polymerase β (DNA poly β) mRNA levels, which may be modulated by thyroid-stimulating hormone (TSH) or thyroid-stimulating substances, i.e. TSH receptor antibody (TRAb).

RESULT: Addition of TSH or TRAb to primary cultures of Graves' disease thyroid cells for 4 h led to no increase in DNA poly β mRNA levels. In contrast, thyroid hormone synthesizing enzyme, peroxidase, mRNA levels increased fivefold after coculture with TSH and TRAb, even though DNA poly β activity and mRNA levels are already significantly higher in Graves' disease thyroid tissues, compared with normal thyroid tissue.

DISCUSSION: These results indicate that DNA poly β expression in Graves' disease thyroid cells may be maximally activated or plateau in response to thyroid-stimulating immunoglobulins, or that the activation of to poly β expression may occur via pathways other than the G protein and cyclic AMP system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app