Add like
Add dislike
Add to saved papers

Heterogeneity of crowded cellular fluids on the meso- and nanoscale.

Soft Matter 2016 November 29
Cellular fluids are complex media that are crowded with macromolecules and membrane-enclosed organelles on several length scales. Many studies have shown that crowding can significantly alter transport and reaction kinetics in biological but also in bio-mimetic fluids. Yet, experimental insights on how well bio-mimetic fluids can capture the complexity of cellular fluids are virtually missing. Therefore, we have combined fluorescence correlation spectroscopy (FCS) and fluorescence lifetime imaging microscopy (FLIM) to compare the spatial heterogeneities of biological and simple bio-mimetic crowded fluids. As a result, we find that these artificial fluids are capable of mimicking the average diffusion behavior but not the considerable heterogeneity of cellular fluids on the mesoscale (∼100 nm). On the nanoscale, not even the average properties are captured. Thus, cellular fluids feature a distinct, heterogeneous crowding state that differs from simple bio-mimetic fluids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app