Add like
Add dislike
Add to saved papers

Novel systematic detergent screening method for membrane proteins solubilization.

Analytical Biochemistry 2017 January 16
Membrane proteins play crucial role in many cellular processes including cell adhesion, cell-cell communication, signal transduction and transport. To better understand the molecular basis of such central biological machines and in order to specifically study their biological and medical role, it is necessary to extract them from their membrane environment. To do so, it is challenging to find the best solubilization condition. Here we describe, a systematic screening method called BMSS (Biotinylated Membranes Solubilization & Separation) that allow screening 96 conditions at once. Streptavidine magnetic beads are used to separate solubilized proteins from remaining biotinylated membranes after solubilization. Relative quantification of dot blots help to select the best conditions to be confirmed by classical ultra-centrifugation and western blot. Classical detergents with different physical-chemical characteristics, novel calixarene based detergents and combination of both, were used for solubilization trials to obtain broad spectrum of conditions. Here, we show the application of BMSS to discover solubilization conditions of a GPCR target (MP-A) and a transporter (MP-B). The selected conditions allowed the solubilization and purification of non-aggregated and homogenous native membrane proteins A and B. Taken together, BMSS represent a rapid, reproducible and high throughput assessment of solubilization toward biochemical/functional characterization, biophysical screening and structural investigations of membrane proteins of high biological and medical relevance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app