Add like
Add dislike
Add to saved papers

SAR study of 5-alkynyl substituted quinazolin-4(3H)-ones as phosphoinositide 3-kinase delta (PI3Kδ) inhibitors.

PI3Kδ is a key component in the aberrant signaling transduction in B cell malignancy, therefore specific targeting PI3Kδ has become an attractive molecularly targeted therapy for chronic lymphocytic leukemia (CLL). Herein, we describe the discovery and optimization of a series of 5-alkynyl substituted PI3Kδ inhibitors based on the first FDA-approved inhibitor idelalisib. Compound 8d bearing the 1-morpholinohex-5-yn-1-one moiety as the C5-substituent was identified to have high potency against PI3Kδ (3.82 nM) and SU-DHL-6 cells (7.60 nM), respectively. It was 154-fold selective over PI3Kα, 133-fold selective against PI3Kβ, and 24-fold selective against PI3Kγ. Treatment of MOLT-4 and SU-DHL-6 cells with compound 8d for 1 h resulted in reduction of phosphorylation of both Akt (S473) and its downstream S6k1 (T389) in a concentration-dependent manner. Compound 8d showed potent anti-proliferative activity as well against T lymphoblast MOLT-4, suggesting its potential activity in T-cell leukemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app