Add like
Add dislike
Add to saved papers

A structural and temporal study of the surfactants behenyltrimethylammonium methosulfate and behenyltrimethylammonium chloride adsorbed at air/water and air/glass interfaces using sum frequency generation spectroscopy.

Molecular scale information about the structure of surfactants at interfaces underlies their application in consumer products. In this study the non-linear optical technique of Sum Frequency Generation (SFG) vibrational spectroscopy has been used to investigate the structure and temporal behaviour of two cationic surfactants used frequently in hair conditioners. SFG spectra of films of behenyltrimethylammonium methosulfate (BTMS) and behenyltrimethylammonium chloride (BTAC) were recorded at the air/water interface and on glass slides following Langmuir Blodgett (LB) deposition. The assignment of the BTMS and BTAC spectral features (resonances) to the CH stretching modes of the surfactants was consolidated by comparison with the SFG spectrum of deuterated cetyltrimethylammonium bromide (d-CTAB) and by recording spectra on D2 O as well as on water. The CH resonances arise from the methylene and methyl groups of the tail and head-groups of the surfactants. A slow collapse mechanism was observed following film compression of both BTAC and BTMS. The change in molecular structure of the films undergoing this slow collapse was followed by recording sequential SFG spectra in the CH region, and by monitoring the SFG intensity at specific wavenumbers over time. Additionally, LB deposition onto glass was used to capture the state of the film during the slow collapse, and these SFG spectra showed close similarity to the corresponding spectra on water. Complementary Atomic Force Microscopy (AFM) was used to elucidate the layering of the compressed and relaxed films deposited onto mica by LB deposition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app