Add like
Add dislike
Add to saved papers

First-principles phase diagram calculations for the rocksalt-structure quasibinary systems TiN-ZrN, TiN-HfN and ZrN-HfN.

We have studied the phase equilibria of three ceramic quasibinary systems Ti1-x Zr x N, Ti1-x Hf x N and Zr1-x Hf x N (0  ⩽  x  ⩽  1) with density functional theory, cluster expansion and Monte Carlo simulations. We predict consolute temperatures (T C ), at which miscibility gaps close, for Ti1-x Zr x N to be 1400 K, for Ti1-x Hf x N to be 700 K, and below 200 K for Zr1-x Hf x N. The asymmetry of the formation energy ΔE f (x) is greater for Ti1-x Hf x N than Ti1-x Zr x N, with less solubility on the smaller cation TiN-side, and similar asymmetries were predicted for the corresponding phase diagrams. We also analyzed different energetic contributions: ΔE f of the random solid solutions were decomposed into a volume change term, [Formula: see text], and a chemical exchange and relaxation term, [Formula: see text]. These two energies partially cancel one another. We conclude that [Formula: see text] influences the magnitude of T C and [Formula: see text] influences the asymmetry of ΔE f (x) and phase boundaries. We also conclude that the absence of experimentally observed phase separation in Ti1-x Zr x N and Ti1-x Hf x N is due to slow kinetics at low temperatures. In addition, elastic constants and mechanical properties of the random solid solutions were studied with the special quasirandom solution approach. Monotonic trends, in the composition dependence, of shear-related mechanical properties, such as Vickers hardness between 18 to 23 GPa, were predicted. Trends for Ti1-x Zr x N and Ti1-x Hf x N exhibit down-bowing (convexity). It shows that mixing nitrides of same group transition metals does not lead to hardness increase from an electronic origin, but through solution hardening mechanism. The mixed thin films show consistency and stability with little phase separation, making them desirable coating choices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app