JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Extracting Stage-Specific and Dynamic Modules Through Analyzing Multiple Networks Associated with Cancer Progression.

Determining the dynamics of pathways associated with cancer progression is critical for understanding the etiology of diseases. Advances in biological technology have facilitated the simultaneous genomic profiling of multiple patients at different clinical stages, thus generating the dynamic genomic data for cancers. Such data provide enable investigation of the dynamics of related pathways. However, methods for integrative analysis of dynamic genomic data are inadequate. In this study, we develop a novel nonnegative matrix factorization algorithm for dynamic modules ( NMF-DM), which simultaneously analyzes multiple networks for the identification of stage-specific and dynamic modules. NMF-DM applies the temporal smoothness framework by balancing the networks at the current stage and the previous stage. Experimental results indicate that the NMF-DM algorithm is more accurate than the state-of-the-art methods in artificial dynamic networks. In breast cancer networks, NMF-DM reveals the dynamic modules that are important for cancer stage transitions. Furthermore, the stage-specific and dynamic modules have distinct topological and biochemical properties. Finally, we demonstrate that the stage-specific modules significantly improve the accuracy of cancer stage prediction. The proposed algorithm provides an effective way to explore the time-dependent cancer genomic data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app