Add like
Add dislike
Add to saved papers

Reversibility of strain stiffening in silk fibroin gels.

We investigate the linear and nonlinear viscoelastic properties as well as the reversibility of strain-stiffening behavior of silk fibroin gels. The gels are prepared from 4.2w/v% fibroin solution in the presence of butanediol diglycidyl ether and N,N,N',N'-tetramethylethylenediamine (TEMED) as a cross-linker and catalyst, respectively. By changing the concentration of TEMED in the gelation system, fibroin gels exhibiting a storage modulus G' between 10(-1)-10(5)Pa and a loss factor tan δ between 10(-2) and 10° could be obtained. We observe a strong stiffening (up to 900%) in fibroin gels with increasing strain above 10% deformation, but reversibly if the strain is removed, the gel recovers its initial viscoelastic properties. The strain induced formation of transient intermolecular domains acting as reversible cross-links are responsible for the stiffening behavior of fibroin gels. These additional cross-links formed in the hardened fibroin gels have a temporary nature with lifetimes of the order of seconds. The nonlinear behavior of fibroin gels can be reproduced by a wormlike chain model taking into account the entropic elasticity of fibroin molecules and the strain induced increase in the cross-link density of fibroin gels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app