Add like
Add dislike
Add to saved papers

Morphological Changes in a Severe Model of Parkinson's Disease and Its Suitability to Test the Therapeutic Effects of Microencapsulated Neurotrophic Factors.

The unilateral 6-hydroxydopamine (6-OHDA) lesion of medial forebrain bundle (MFB) in rats affords us to study the advanced stages of Parkinson's disease (PD). Numerous evidences suggest synergic effects when various neurotrophic factors are administered in experimental models of PD. The aim of the present work was to assess the morphological changes along the rostro-caudal axis of caudo-putamen complex and substantia nigra (SN) in the referred model in order to test the suitability of a severe model to evaluate new neurorestorative therapies. Administration of 6-OHDA into MFB in addition to a remarkable depletion of dopamine in the nigrostriatal system induced an increase of glial fibrillary acidic protein (GFAP)-positive cells in SN and an intense immunoreactivity for OX-42, vascular endothelial growth factor (VEGF), and Lycopersycum esculentum agglutinin (LEA) in striatum and SN. Tyrosine hydroxylase (TH) immunostaining revealed a significant decrease of the TH-immunopositive striatal volume in 6-OHDA group from rostral to caudal one. The loss of TH-immunoreactive (TH-ir) neurons and axodendritic network (ADN) was higher in caudal sections. Morphological recovery after the implantation of microspheres loaded with VEGF and glial cell line-derived neurotrophic factor (GDNF) in parkinsonized rats was related to the preservation of the TH-ir cell number and ADN in the caudal region of the SN. In addition, these findings support the neurorestorative role of VEGF+GDNF in the dopaminergic system and the synergistic effect between both factors. On the other hand, a topological distribution of the dopaminergic system was noticeable in the severe model, showing a selective vulnerability to 6-OHDA and recovering after treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app