Add like
Add dislike
Add to saved papers

Predicting disease progression in amyotrophic lateral sclerosis.

OBJECTIVE: It is essential to develop predictive algorithms for Amyotrophic Lateral Sclerosis (ALS) disease progression to allow for efficient clinical trials and patient care. The best existing predictive models rely on several months of baseline data and have only been validated in clinical trial research datasets. We asked whether a model developed using clinical research patient data could be applied to the broader ALS population typically seen at a tertiary care ALS clinic.

METHODS: Based on the PRO-ACT ALS database, we developed random forest (RF), pre-slope, and generalized linear (GLM) models to test whether accurate, unbiased models could be created using only baseline data. Secondly, we tested whether a model could be validated with a clinical patient dataset to demonstrate broader applicability.

RESULTS: We found that a random forest model using only baseline data could accurately predict disease progression for a clinical trial research dataset as well as a population of patients being treated at a tertiary care clinic. The RF Model outperformed a pre-slope model and was similar to a GLM model in terms of root mean square deviation at early time points. At later time points, the RF Model was far superior to either model. Finally, we found that only the RF Model was unbiased and was less subject to overfitting than either of the other two models when applied to a clinic population.

INTERPRETATION: We conclude that the RF Model delivers superior predictions of ALS disease progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app