Add like
Add dislike
Add to saved papers

Fluoride influences nickel-titanium orthodontic wires' surface texture and friction resistance.

OBJECTIVES: The aim of this study was to investigate the effects exerted by the acidulated fluoride gel on stainless steel and nickel-titanium (Ni-Ti) orthodontic wires.

MATERIALS AND METHODS: Sixty stainless steel and Ni-Ti orthodontic archwires were distributed into forty archwires used for in vitro study and twenty for in situ study. Fluoride was applied for 1 h in the in vitro experiment while it was applied for 5 min in the in situ experiment. The friction resistance of all wires with ceramic brackets before/after topical fluoride application was measured using a universal testing machine at 1 min intervals of moving wire. Moreover, surface properties of the tested wires before/after fluoride application and before/after friction test were examined by a scanning electron microscope (SEM). Dunnett's t-test was used to compare frictional resistance of as-received stainless steel wires and Ni-Ti wires to the wires treated by fluoride in vitro and in situ (P < 0.05). Two-way ANOVA was used to compare the effect of fluoride application and type of wire on friction resistance in vitro and in situ (P < 0.05).

RESULTS: Ni-Ti wires recorded significantly high friction resistance after fluoride application when compared to stainless steel wires in vitro, P < 0.05. Fluoride application did not significantly affect the friction resistance of the tested wires in situ, P < 0.05. SEM observation revealed deterioration of the surface texture of the Ni-Ti wires after fluoride application in vitro and in situ.

CONCLUSIONS: The in vitro fluoride application caused an increase in friction resistance of Ni-Ti wires when compared to stainless steel wires. In vitro and in situ fluoride application caused deterioration in surface properties of Ni-Ti wires.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app