Add like
Add dislike
Add to saved papers

Base triggered release of insecticide from bentonite reinforced citric acid crosslinked carboxymethyl cellulose hydrogel composites.

Carbohydrate Polymers 2017 January 21
Biopolymeric clay hydrogels composites, synthesized from crosslinking of carboxymethyl cellulose with citric acid in the presence of bentonite, were used to develop base triggered release formulations (TRFs) of thiamethoxam (3-(2-chloro-1,3-thiazol-5-ylmethyl)-5-methyl-1,3,5-oxadiazinan-4-ylidene(nitro)amine) through an ex-situ encapsulation technique. Hydrogels, hydrogel-bentonite composites and their formulations were characterized by 1 H NMR, IR spectroscopy, XRD, and SEM-EDS. Triggered release of thiamethoxam from the developed formulations was studied in water (pH 7-11) with the help of HPLC and subjected to kinetics analysis using different models. The kinetics study showed the release from developed TRFs followed Gallagher-Corrigan equation with an immediate burst release phenomena and higher release rate of thiamethoxam was observed at alkaline pH than neutral condition (pH 7.0). These TRFs of thiamethoxam may be useful for the efficient control of insects which are having alkaline pH in their gut.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app