JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Force model for laparoscopic graspers: implications for virtual simulator design.

INTRODUCTION: Laparoscopic graspers limit haptic perception, which in turn leads to tissue damage. Using virtual simulators to train surgeons in handling these instruments would ensure safer grasp. The design of a laparoscopic virtual simulator with force feedback depends on effective implementation of the grasper force model.

OBJECTIVE: To develop a laparoscopic grasper tip force model theoretically from grasper mechanics and validate the same experimentally during laparoscopic pinching.

MATERIALS AND METHODS: We developed a force model for double and single jaw action graspers using grasper mechanics. For experimental validation, the handle angle and the forces at the tip and the handle of the instrumented graspers during laparoscopic pinching of porcine abdominal tissues were measured. The intra-class correlation coefficient (ICC) between experimental and calculated tip force was calculated.

RESULT: Excellent ICC (ICC ≥0.8, p<.001) between calculated and experimental tip force was obtained for both graspers for all grasped tissues. Mean absolute forces for all trials while using double and single jaw action graspers were ((FTc = 1.7N, FTe = 1.8N) and (FTc = 2.2N, FTe = 2.8N)) for gall bladder, ((FTc = 3.4N, FTe = 4.4N) and (FTc = 3.3N, FTe = 3.4N)) for liver and ((FTc = 4.2N, FTe = 4.5N) and (FTc = 2.3N, FTe = 2.6N)) for spleen, respectively.

CONCLUSION: The proposed model may be used for the design of laparoscopic pinching action in a virtual simulator with force feedback and also for better ergonomic design of laparoscopic graspers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app