Add like
Add dislike
Add to saved papers

An analysis of the effect of impact loading on the destruction of vascular structures in the brain.

Subdural hematomas are one of the frequent complications of head injuries. Such hematomas result from exceeding the border strength values of bridging veins. Subdural haemorrhages are life-threatening and are a frequent cause of considerable pathologies. Traffic participants and also soldiers who participate in armed conflicts are the most vulnerable to head injuries. Although hematomas have been studied for many years the mechanism of hematoma formation has not been fully clarified as yet. In the paper, the effort of brain tissue structures due to the propagation of shock wave was analyzed. Particular attention was paid to the deformation ability and changes in the energy of bridging veins. This research was concerned with changes in mechanical properties of these veins in the frontal, parietal and occipital regions of the brain. For the present research the authors have constructed finite element models of brain tissue fragments and conducted numerical studies taking into account the boundary conditions arising from violent overloads that result from combat operations. As a result of the numerical analysis conducted, critical values of strain and stress have been obtained. The analysis showed high diversity in the properties of the different regions of the brain tissue. The studies carried out by the authors rendered it possible to assess the effort of the tissue structures of veins in connection with mechanical parameters, including geometrical parameters, in particular in relation to the likelihood of hematoma formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app