Add like
Add dislike
Add to saved papers

Design and Construction of Generalizable RNA-Protein Hybrid Controllers by Level-Matched Genetic Signal Amplification.

Cell Systems 2016 December 22
For synthetic biology applications, protein-based transcriptional genetic controllers are limited in terms of orthogonality, modularity, and portability. Although ribozyme-based switches can address these issues, their current two-stage architectures and limited dynamic range hinder their broader incorporation into systems-level genetic controllers. Here, we address these challenges by implementing an RNA-protein hybrid controller with a three-stage architecture that introduces a transcription-based amplifier between an RNA sensor and a protein actuator. To facilitate the construction of these more complex circuits, we use a model-guided strategy to efficiently match the activities of stages. The presence of the amplifier enabled the three-stage controller to have up to 200-fold higher gene expression than its two-stage counterpart and made it possible to implement higher-order controllers, such as multilayer Boolean logic and feedback systems. The modularity inherent in the three-stage architecture along with the sensing flexibility of RNA devices presents a generalizable framework for designing and building sophisticated genetic control systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app