Add like
Add dislike
Add to saved papers

Auranofin inactivates Trichomonas vaginalis thioredoxin reductase and is effective against trichomonads in vitro and in vivo.

Trichomoniasis, caused by the protozoan parasite Trichomonas vaginalis, is the most common, non-viral, sexually transmitted infection in the world, but only two closely related nitro drugs are approved for its treatment. New antimicrobials against trichomoniasis remain an urgent need. Several organic gold compounds were tested for activity against T. vaginalis thioredoxin reductase (TrxR) in cell-free systems as well as for activity against different trichomonads in vitro and in a murine infection model. The organic gold(I) compounds auranofin and chloro(diethylphenylphosphine)gold(I) inhibited TrxR in a concentration-dependent manner in assays with recombinant purified reductase and in cytoplasmic extracts of T. vaginalis transfected with a haemagglutinin epitope-tagged form of the reductase. Auranofin potently suppressed the growth of three independent clinical T. vaginalis isolates as well as several strains of another trichomonad (Tritrichomonas foetus) in a 24 h-assay, with 50% inhibitory concentrations of 0.7-2.5 µM and minimum lethal concentrations of 2-6 µM. The drug also compromised the ability of the parasite to overcome oxidant stress, supporting the notion that auranofin acts, in part, by inactivating TrxR-dependent antioxidant defences. Chloro(diethylphenylphosphine)gold(I) was 10-fold less effective against T. vaginalis in vitro than auranofin. Oral administration of auranofin for 4 days cleared the parasites in a murine model of vaginal T. foetus infection without displaying any apparent adverse effects. The approved human drug auranofin may be a promising agent as an alternative treatment of trichomoniasis in cases when standard nitro drug therapies have failed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app