Add like
Add dislike
Add to saved papers

Influence of ambient temperature on the heterogeneity of ambient fine particle chemical composition and disease prevalence.

In this study, we present the associations of fine particle nitrate, sulfate, and four organic carbon fractions with ambient temperature in urban and background monitoring sites in the United States for the 2011-2012 period. Nitrate concentrations increased for decreasing temperatures, while sulfate levels increased for temperatures higher than 14 °C. The profiles of organic carbon fractions for different temperatures were comparable to that observed for elemental carbon, a thermally stable and non-reactive component emitted from combustion-related sources. The trends for all parameters were comparable for the nine regions and independent to emission estimates of fine particles and their precursors. These patterns demonstrated that ambient temperature may manipulate fine particulate composition. These differences may be augmented by rising temperatures due to changing climate. Considering the causal associations between particulate pollution and pulmonary and cardiovascular diseases, changes in the composition of particulate pollution may imply adjustments on the human health impacts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app