Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Measuring G protein-coupled receptor signalling in the brain with resonance energy transfer based biosensors.

Activation of a G protein-coupled receptor (GPCR) triggers downstream signalling pathways whose identity is determined not only by the genetic background of the cell, but also by the interacting ligand. Assays that measure endogenous GPCR signalling in vivo are needed to specify the intracellular signalling pathways leading to therapeutic vs. adverse outcomes in animal models. To this end, genetically encoded biosensors can be expressed in vivo with cell type specificity to report GPCR signalling in real time. Biosensor imaging is facilitated by novel microscopic and photometric techniques developed for imaging in behaving animals. The techniques discussed here herald a new wave of in vivo signalling studies that will help identify therapeutically relevant signalling, and design functionally selective drugs for neuropsychiatric diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app