Add like
Add dislike
Add to saved papers

Sex- and age-dependence of region- and layer-specific knee cartilage composition (spin-spin-relaxation time) in healthy reference subjects.

Compositional measures of articular cartilage are accessible in vivo by magnetic resonance imaging (MRI) based relaxometry and cartilage spin-spin transverse relaxation time (T2) has been related to tissue hydration, collagen content and orientation, and mechanical (functional) properties of articular cartilage. The objective of the current study was therefore to evaluate subregional variation, and sex- and age-differences, in laminar (deep and superficial) femorotibial cartilage T2 relaxation time in healthy adults. To this end, we studied the right knees of 92 healthy subjects from the Osteoarthritis Initiative reference cohort (55 women, 37 men; age range 45-78 years; BMI 24.4±3.1) without knee pain, radiographic signs, or risk factors of knee osteoarthritis in either knee. T2 of the deep and superficial femorotibial cartilages was determined in 16 femorotibial subregions, using a multi-echo spin-echo (MESE) MRI sequence. Significant subregional variation in femorotibial cartilage T2 was observed for the superficial and for the deep (both p<0.001) cartilage layer (Friedman test). Yet, layer- and region-specific femorotibial T2 did not differ between men and women, or between healthy adults below and above the median age (54 years). In conclusion, this first study to report subregional (layer-specific) compositional variation of femorotibial cartilage T2 in healthy adults identifies significant differences in both superficial and deep cartilage T2 between femorotibial subregions. However, no relevant sex- or age-dependence of cartilage T2 was observed between age 45-78 years. The findings suggest that a common, non-sex-specific set of layer-and region-specific T2 reference values can be used to identify compositional pathology in joint disease for this age group.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app