Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Evaluation of automated time-lapse microscopy for assessment of in vitro activity of antibiotics.

This study aimed to evaluate the potential of a new time-lapse microscopy based method (oCelloScope) to efficiently assess the in vitro antibacterial effects of antibiotics. Two E. coli and one P. aeruginosa strain were exposed to ciprofloxacin, colistin, ertapenem and meropenem in 24-h experiments. Background corrected absorption (BCA) derived from the oCelloScope was used to detect bacterial growth. The data obtained with the oCelloScope were compared with those of the automated Bioscreen C method and standard time-kill experiments and a good agreement in results was observed during 6-24h of experiments. Viable counts obtained at 1, 4, 6 and 24h during oCelloScope and Bioscreen C experiments were well correlated with the corresponding BCA and optical density (OD) data. Initial antibacterial effects during the first 6h of experiments were difficult to detect with the automated methods due to their high detection limits (approximately 105 CFU/mL for oCelloScope and 107 CFU/mL for Bioscreen C), the inability to distinguish between live and dead bacteria and early morphological changes of bacteria during exposure to ciprofloxacin, ertapenem and meropenem. Regrowth was more frequently detected in time-kill experiments, possibly related to the larger working volume with an increased risk of pre-existing or emerging resistance. In comparison with Bioscreen C, the oCelloScope provided additional information on bacterial growth dynamics in the range of 105 to 107 CFU/mL and morphological features. In conclusion, the oCelloScope would be suitable for detection of in vitro effects of antibiotics, especially when a large number of regimens need to be tested.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app