EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Molecularly imprinted polymers on graphene oxide surface for EIS sensing of testosterone.

A novel electrochemical biosensor was developed for ultrasensitive determination of testosterone from femtomolar to micromolar levels via electrochemical impedance spectroscopy (EIS) measurements. The sensor features a nanosized molecularly imprinted polymer (MIP) film that was electrochemically grafted on a graphene-oxide sheets modified electrode. The detection mechanism of this senor is explained via the change of the interfacial impedance that derived from the recognition of the target molecule. Due to the nanosheet structure as well as the high surface area of graphene-oxide, the sensitivity of the MIP sensor is enhanced remarkably. Under an optimized condition, a wide linear range from 1fM to 1µm (1×10(-15)-1×10(-6)molL(-1)) and a detection limit of 0.4fM (4.0×10(-16)molL(-1)) was obtained. This composite film presented a good selectivity over structurally similar steroid hormones, and a long term stability in room temperature for the detection of testosterone. Considering these advantages, the MIP/GO electrochemical biosensor could be a substitute of testosterone immunosensor, and may be further extended to the detection of other endogenous substances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app