Add like
Add dislike
Add to saved papers

An innovative application of stable isotopes (δ 2 H and δ 18 O) for tracing pollutant plumes in groundwater.

The identification of the sources of contaminants present in groundwater at industrial sites is primordial to address environmental and industrial issues. However, available tools are often inadequate or expensive. Here, we present the data of stable isotopes (δ18 O and δ2 H) of the water molecule at an industrial site where electrochemistry plant occurs impacting the groundwater quality. High ClO3 and ClO4 contents and 2 H enrichment have been measured in groundwater. Recharge of aquifer relates to infiltration of rainwater and by subsurface inflow. On-site, industrial products are generated by electrolysis. We show that the electrolysis process leads to a large 2 H enrichment (+425‰) in solutions. In the absence of hydrothermal water input containing H2 S, we demonstrate that the relationship between δ18 O and δ2 H can be easily used in a way to trace the origin of the ClO3 and ClO4 in groundwater. Isotopes evidenced first a leakage from end-product storage tanks or during the production process itself. Then, an accumulation and release of ClO3 and ClO4 from soil is demonstrated. Our study successfully shows that stable isotopes are a powerful and low cost tool for tracing pollutant plumes in an industrial context using electrolysis process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app