Add like
Add dislike
Add to saved papers

The systematic characterization of nanoscale bamboo charcoal and its sorption on phenanthrene:A comparison with microscale.

This study investigated the characteristics of nanoscale bamboo charcoal (NBC), and made a comparison with microscale bamboo charcoal (MBC) on how they impact on the sorption abilities of different soils. The two charcoals contained similar elemental contents (e.g., high C, low H and low N) and various functional groups on their surfaces (e.g., aromatic structure, carboxyl, and hydroxyl). However, NBC had a larger total pore volume than that of MBC and was more likely to generate multi-layer sorption of phenanthrene. Controlled by van der Waals forces and electrostatic forces, NBC formed meso-and macropores (intra-particle porosity) and a more intricate pore structure. The performance of NBC in aqueous and soil-water systems was conspicuous and impressing. In aqueous system, by virtue of its larger pore volume, surface area and nonprotonated aromatic carbon, the Kd (sorption coefficient) of NBC reached up to 1.24×106 , almost 10 times higher than that of MBC. In soil-water systems, although it could aggregate and react with compounds in soil, the performance of NBC was not weakened by the complicated soil properties, and was still more capable of phenanthrene sorption than MBC, even at an extremely low addition rate 0.2% in soils. Additionally, in comparison with some other common biochars, NBC still showed a promising capacity for phenanthrene sorption in two systems. This finding increases our knowledge of NBC for the remediation of organic pollutants in soil and indicates that the addition rate of charcoals in soils could be reduced by lessening the particle size. Therefore, NBC provides a new possibility for soil pollutant remediation and deserves further research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app