Add like
Add dislike
Add to saved papers

Polythiophene/graphene oxide nanostructured electrodeposited coating for on-line electrochemically controlled in-tube solid-phase microextraction.

In this work, a novel polythiophene/graphene oxide (PTh/GO) nanostructured coating was introduced for on-line electrochemically-controlled in-tube solid phase microextraction of amitriptyline (AMI) and doxepin (DOX) as antidepressant drugs. The PTh/GO coating was prepared on the inner surface of a stainless steel tube by a facile in-situ electro-deposition method and it was used as a working electrode for electrochemically control in-tube solid phase microextraction. In the PTh/GO coating, GO acts as an anion dopant and sorbent. The PTh/GO coating, compared to PTh and GO coatings, exhibited enhanced long lifetime, good mechanical stability and a large specific surface area. Regarding the in-tube SPME, some important factors such as the extraction and desorption voltage, extraction and desorption times and flow rates of the sample solution and eluent, which could affect the extraction and separation efficiency of the analytes, were optimized. Total analysis time of this method including the online extraction and desorption time was about 21min for each sample. AMI and DOX were extracted, separated and determined with limits of detection as small as 0.3μgL(-1) and 0.5μgL(-1), respectively. This method showed good linearity in the range of 0.7-200μgL(-1), 2.3-200μgL(-1) and 2.9-200μgL(-1) for AMI, and in the range 0.9-200μgL(-1), 2.5-200μgL(-1) and 3.0-200μgL(-1) for DOX in water, urine and plasma samples, respectively; the coefficients of determination were also equal to or higher than 0.9976. The inter- and intra-assay precisions (RSD%, n=3) were in the range of 2.8-3.4% and 2.9-3.9% at the three concentration levels of 5, 25 and 50μgL(-1), respectively. Finally, under the optimal conditions, the method was applied for the analysis of the drugs in human urine and plasma pretreated samples and good results were obtained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app