Add like
Add dislike
Add to saved papers

Vertically Bounded Double Diffusive Convection in the Finger Regime: Comparing No-Slip versus Free-Slip Boundary Conditions.

Physical Review Letters 2016 October 29
Vertically bounded fingering double diffusive convection is numerically investigated, focusing on the influences of different velocity boundary conditions, i.e., the no-slip condition, which is inevitable in the lab-scale experimental researches, and the free-slip condition, which is an approximation for the interfaces in many natural environments, such as the oceans. For both boundary conditions the flow is dominated by fingers and the global responses follow the same scaling laws, with enhanced prefactors for the free-slip cases. Therefore, the laboratory experiments with the no-slip boundaries serve as a good model for the finger layers in the ocean. Moreover, in the free-slip case, although the tangential shear stress is eliminated at the boundaries, the local dissipation rate in the near-wall region may exceed the value found in the no-slip cases, which is caused by the stronger vertical motions of horizontally focused fingers and sheet structures near the free-slip boundaries. This counterintuitive result might be relevant for properly estimating and modeling the mixing and entrainment phenomena at free surfaces and interfaces widespread in oceans and geophysical flows.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app