Add like
Add dislike
Add to saved papers

Anti-Complementary Components of Helicteres angustifolia.

A first phenalenon derivative with an acetyl side chain at C-8, 8-acetyl-9-hydroxy-3-methoxy-7-methyl-1-phenalenon (compound 1), and a pair of new sesquilignan epimers at C-7″ of hedyotol C and hedyotol D analogs, hedyotol C 7″-O-β-d-glucopyranoside (compound 2) and hedyotol D 7″-O-β-d-glucopyranoside (compound 3) were isolated from the aerial parts of Helicteres angustifolia together with nine known compounds (4-12). Their structures were elucidated on the basis of spectroscopic methods, including mass spectroscopy, and 1D and 2D nuclear magnetic resonance. Eleven isolates exhibited anti-complementary activity. In particular, compounds 4 and 5 exhibited potent anti-complementary activities against the classical and alternative pathways with CH50 values of 0.040 ± 0.009 and 0.009 ± 0.002 mM, and AP50 values of 0.105 ± 0.015 and 0.021 ± 0.003 mM, respectively. The targets of compounds 4 and 5 in the complement activation cascade were also identified. In conclusion, the anti-complementary components of H. angustifolia possessed chemical diversity and consisted mostly of flavonoids and lignans in this study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app