Add like
Add dislike
Add to saved papers

Impaired adipose tissue lipid storage, but not altered lipolysis, contributes to elevated levels of NEFA in type 2 diabetes. Degree of hyperglycemia and adiposity are important factors.

BACKGROUND: Elevated levels of circulating non-esterified fatty acids (NEFA) mediate many adverse metabolic effects. In this work we aim to determine the impact of type 2 diabetes (T2D), glycemic control and obesity on lipolysis regulation.

DESIGN AND PARTICIPANTS: 20 control and 20 metformin-treated T2D subjects were matched for sex (10M/10 F), age (58±11 vs 58±9 y) and BMI (30.8±4.6 vs 30.7±4.9kg/m(2)). In vivo lipolysis was assessed during a 3h-OGTT with plasma glycerol and NEFA levels. Subcutaneous adipose tissue (SAT) biopsies were obtained to measure mRNA and metabolite levels of factors related to lipolysis and lipid storage and to assess in vitro lipolysis in isolated subcutaneous adipocytes.

RESULTS: Plasma NEFA AUC during the OGTT where higher 30% (P=0.005) in T2D than in control subjects, but plasma glycerol AUC and subcutaneous adipocyte lipolysis in vitro were similar, suggesting that adipose tissue lipolysis is not altered. Expression in SAT of genes involved in lipid storage (FABP4, DGAT1, FASN) were reduced in T2D subjects compared with controls, but no differences were seen for genes involved in lipolysis. T2D subjects had elevated markers of beta-oxidation, α-hydroxybutyrate (1.4-fold, P<0.01) and β-hydroxybutyrate (1.7-fold, P<0.05) in plasma. In multivariate analysis, HbA1c, visceral adipose tissue volume and sex (male) were significantly associated with NEFA AUC in T2D subjects.

CONCLUSIONS: In T2D subjects, NEFA turnover is impaired, but not due to defects in lipolysis or lipid beta-oxidation. Impaired adipose NEFA re-esterification or de novo lipogenesis is likely to contribute to higher NEFA plasma levels in T2D. The data suggest that hyperglycemia and adiposity are important contributing factors for the regulation of plasma NEFA concentrations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app