Add like
Add dislike
Add to saved papers

Quantitative evaluation of longitudinal strain in layer-specific myocardium during normal pregnancy in China.

Cardiovascular Ultrasound 2016 November 11
BACKGROUND: The myocardial wall of the left ventricle is a complex, multilayered structure and is not homogenous. The aim of this study was to determine longitudinal strain (LS) in the three myocardial layers in normal pregnant women according to gestation proceedings.

METHODS: The advanced two-dimensional speckle tracking echocardiography (2D STE) was performed on 62 women during each pregnancy trimester and 6 to 9 weeks after delivery, while 30 age-matched, healthy, nonpregnant women served as controls. LS on endocardial, mid-myocardial and epicardial layers at 18 cardiac segments were measured.

RESULTS: As gestation proceeded, all of layer-specific LS and global LS progressively decreased, which subsequently recovered postpartum (P < 0.05), and the LS gradient between inner and outer myocardium became greater, which reached its maximum in the late pregnancy. Peak systolic LS was the highest at endocardium and the lowest at epicardium, while the highest at the apical level and the lowest at the base (P < 0.05). In the early pregnancy and postpartum, LS at basal level was homogenous, meanwhile layer-specific LS showed significant differences at mid-ventricular and apical level throughout the progress of normal pregnancy (P < 0.05).

CONCLUSIONS: Using 2D STE, three-layer assessment of LS can be performed in pregnant women and shall give us new insights into the quantitative analysis of global and regional LV function during pregnancy. Future studies on the detection of pregnancy related heart disease would require these parameters as reference values for each time point of a normal pregnancy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app