Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Segment 2D and 3D Filaments by Learning Structured and Contextual Features.

We focus on the challenging problem of filamentary structure segmentation in both 2D and 3D images, including retinal vessels and neurons, among others. Despite the increasing amount of efforts in learning based methods to tackle this problem, there still lack proper data-driven feature construction mechanisms to sufficiently encode contextual labelling information, which might hinder the segmentation performance. This observation prompts us to propose a data-driven approach to learn structured and contextual features in this paper. The structured features aim to integrate local spatial label patterns into the feature space, thus endowing the follow-up tree classifiers capability to grouping training examples with similar structure into the same leaf node when splitting the feature space, and further yielding contextual features to capture more of the global contextual information. Empirical evaluations demonstrate that our approach outperforms state-of-the-arts on well-regarded testbeds over a variety of applications. Our code is also made publicly available in support of the open-source research activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app