Add like
Add dislike
Add to saved papers

Inhibition of miR-23 protects myocardial function from ischemia-reperfusion injury through restoration of glutamine metabolism.

OBJECTIVE: Myocardial disorders caused by ischemia/reperfusion (IR) continue to be among the most frequent causes of debilitating disease and death. The contribution of cellular metabolism through the production of metabolic intermediates during IR has been increasingly investigated.

MATERIALS AND METHODS: In this study, by using a rat IR injury model, we reported that the expression of microRNA miR-23 was induced by IR. In contrast, the glutamine metabolism was suppressed during IR. The glutamate, glutamine dehydrogenase activity, α-ketoglutarate, and glutaminase (GLS) mRNA expression were significantly decreased by IR. Moreover, the pretreatment of glutamine could protect the myocardium from IR injury.

RESULTS: From microRNA target prediction analysis and results of luciferase assay, we found that miR-23 could directly target the 3'UTR of GLS. Finally, we demonstrated that inhibition of miR-23 protected myocardial function from IR through the restoration of glutamine metabolism.

CONCLUSIONS: This study reveals that inhibition of miR-23 renders protective effects on rat IR injury, highlighting the importance of miR-23 and glutamine metabolism during IR, and suggests a potentially clinical benefit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app